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We study wave transport through a chaotic quantum billiard attached to two waveguides via barriers of
arbitrary transparencies in the semiclassical limit of a large number of open scattering channels. We focus
attention on the ergodic regime, which is described by using a random-matrix approach to chaotic resonance
scattering together with an extended version of Nazarov’s circuit theory. By varying the relative strength of the
barriers’ transparencies a reorganization of the relevant resonances in the energy interval where transport takes
place leads to a full suppression of high transmission modes. We provide a detailed quantitative description of
the process by means of both numerical and analytical evaluations of the average density of transmission
eigenvalues. We show that the density of Fabry-Perot modes can be used as a kind of order parameter for this
quantum transition. A diagram is presented as a function of the transparencies of the barriers exhibiting the
transport regimes and the transition lines.
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I. INTRODUCTION

Interference phenomena and resonance scattering in open
quantum chaotic systems have been studied in the last few
years with renewed interest since the development of nanos-
cale devices �1� and breakthrough experiments in quantum
dots �2� and microwave billiards �3�. Part of the motivations
driving such studies is the intrinsic challenge to find consis-
tent descriptions of quantum mechanical systems coupled to
experimentally controllable environments �4,5�. Profound
topics such as measurement theory and decoherence phe-
nomena must be considered carefully in the theoretical mod-
els and several open questions remain. Consequently, even
the theory of noninteracting particles turned out to be quite
subtle and is still under development. Fortunately many in-
teresting phenomena can be accommodated in the noninter-
acting models, as has been evidenced over the years by sev-
eral experiments in mesoscopic electronic systems.

One of the most attractive features of quantum chaotic
scattering is its universal nature. The same stochastic model
can be applied to describe phenomena in various physical
scales ranging from resonance reactions in atomic nuclei to
electron transport in mesoscopic systems and wave propaga-
tion in microwave cavities. This provides important fertiliza-
tions across boundaries of areas otherwise unconnected. A
striking example is the optical model of nuclear reactions
�6�, which describes the complex scattering characteristics of
a resonance reaction in terms of two well separated time
scales: an immediate response associated with direct fast pro-
cesses and a delayed response corresponding to the forma-
tion and decay of long-living states �the compound nucleus�.
This optical model was further developed by Mahaux and
Weidenmüller �7� into a powerful scattering-matrix approach
to nuclear reactions and culminated with the case study exact
calculation, by Verbaarschot, Weidenmüller, and Zirnbauer
�VWZ� �8�, of the correlation function of the S matrix at

different energies using random matrix theory and the super-
symmetry method. In this approach, universality appears as a
consequence of the requirement that the number of reso-
nances in a relevant energy range �away from thresholds� is
much larger than the number of open scattering channels.
Quite remarkably, the VWZ model provides one of the most
successful descriptions of generic chaotic quantum scattering
in the ergodic regime.

The universality observed in the statistical properties of
the resonance part of the scattering matrix strongly suggests
the possibility of an alternative approach, in which the full
distribution function of S-matrix elements is derived from
generic principles, without any reference to the underlying
Hamiltonian. This program was implemented by Mello and
co-workers �9�, who demonstrated that under very mild as-
sumptions of minimum information, causality, analyticity,
and symmetry constraints the S-matrix distribution function
turns out to be proportional to the Poisson kernel. This func-
tion leads to a high-dimensional generalization of the Pois-
son integral formula that appears in the classical two-
dimensional electrostatic problem of determining the
potential inside a bounded circular domain from the value it
takes on the surface. The generalized multidimensional Pois-
son’s integral formula covers a Shilov boundary �10� �a mini-
mal subset of topological boundaries� so that any analytical
function inside the bounded domain can be determined in
terms of the values it takes on the boundary. The kernel of
this generalized Poisson’s integral is called the Poisson ker-
nel. The equivalence between the VWZ Hamiltonian ap-
proach and Mello’s S-matrix approach was established in
Refs. �11,12�.

A particularly striking effect in open quantum systems is
the resonance trapping phenomenon �4,5�. As the coupling
strength to continua increases resonances start to overlap and
the levels interact strongly in the complex plane exhibiting
avoided crossings. At a critical value of the coupling a reor-
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ganization of the entire spectrum takes place creating a bi-
furcation in the lifetimes of the resonance states. Some states
align with the decay channels and become very unstable,
whereas the rest of the resonances approach the real axis and
become long lived. An experimental observation of this phe-
nomenon in a microwave billiard has recently been reported
�3�. The generic dynamical principle underlying the whole
process is a kind of self-organization associated with a re-
duction in the number of relevant states and a consequent
increase in the system’s stability �4�. Rather interestingly,
under certain conditions it can be shown �13� that this redis-
tribution of the resonances satisfy the requirements of a sec-
ond order phase transition.

An important question addressed by Lehmann, Saher,
Sokolov, and Sommers �14� is the effect on the statistical
properties of S-matrix elements of the above described reso-
nance spectrum reorganization. The importance of this point
can be appreciated through the observation that the VWZ
approach predicts universal expressions for correlations of
S-matrix elements, on a small energy domain about the cen-
ter of the spectrum �E=0�, in terms of certain transmission
coefficients, 0�Tn�1, interpreted as a measure of the part
of the incident flux in channel n that penetrates the interact-
ing region and participates in the formation of the long-living
states. The coupling of the internal states to the scattering
continua is measured by a parameter, 0�wn��, related to
Tn through the formula Tn=4wn / �1+wn�2. The reordering of
the resonance spectrum takes place when some coupling
constants exceed the critical value wn=1. By further increas-
ing these coupling parameters, so that wn�1, broad reso-
nances are formed and move away from the real axis, as
demonstrated in Ref. �14� through a numerical plot of clouds
of S-matrix poles. The key observation is the fact that Tn is
invariant under the transformation wn→1/wn and conse-
quently the universal fluctuation properties of S-matrix ele-
ments are insensitive to this transition. The authors of Ref.
�14� proved that by relaxing the VWZ requirement, the num-
ber of resonances being much larger than the number of open
scattering channels, one can construct nonuniversal models
in which the resonance trapping transition affects the corre-
lation functions of S-matrix elements. Although the reso-
nance trapping phenomenon itself does not affect the sto-
chastic properties of the S-matrix characteristics in the
universal regime, the underlying mechanism �avoided cross-
ings in the resonance-pole plane� imparts notable features
onto transport observables of two-terminal systems, as we
shall demonstrate in this work using random-matrix theory.

The successful application of random matrix models to
quantum transport led to the development of important the-
oretical tools to describe resonance scattering through multi-
terminal chaotic systems �15�. A particularly useful concept
for systems attached to two waveguides �or leads� is the den-
sity of transmission eigenvalues � j, i.e., eigenvalues of tt†,
where t is the transmission matrix. This density, defined as
����=� j����−� j��, encompasses all statistical information
necessary to compute the average value of several transport
observables, such as conductance, shot-noise power, or an
arbitrary moment of the charge-counting statistics. In the
semiclassical limit, defined by a large number of open scat-
tering channels, transport observables acquire a very narrow

Gaussian distribution and the average value obtained from
���� contains all statistically relevant information about the
observable. In this semiclassical limit, ���� exhibits a rather
interesting feature: an inverse square-root singularity at �
=1 whenever Fabry-Perot resonances are formed between
the two barriers at the leads-sample interfaces. This property
has proved to be rather robust and was observed in a variety
of disordered conductors and ballistic chaotic cavities. In
fact, Nazarov and Kindermann �16� claimed that its presence
or absence might be used as an indicator for the existence of
two broad universality classes in quantum transport. Clearly,
the density of transmission eigenvalues is an important probe
to the effects of avoided crossings of resonance poles in the
universal transport regime and a detailed study of this prob-
lem is the main motivation of this paper.

In this work, we consider an open quantum system con-
sisting of a chaotic ballistic cavity coupled, via barriers of
arbitrary transparencies, to two semi-infinite waveguides. We
describe the ergodic dynamics of the system using two ap-
proaches: A numerical implementation of the VWZ model in
the semiclassical limit and analytical calculations by means
of a recent extension, proposed in Ref. �17�, of Nazarov’s
circuit theory �18�. We show that Fabry-Perot modes, identi-
fied as an inverse square-root singularity in ����, can be used
as a kind of order parameter for a quantum transition, driven
by varying the relative strength of the transparencies of the
barriers. We present a diagram exhibiting various transport
regimes in the system. In Sec. II, we present the stochastic
model used to describe the ergodic dynamics inside the cha-
otic cavity, the scattering matrix, and its resonance poles and
the coupling parameters with the associated time scales. In
Sec. III, we present in detail the technical aspects of the
formalism used to calculate the asymptotic of the Poisson
kernel. It has the form of an extended version of Nazarov’s
two-terminal circuit theory. Several examples are worked out
to illustrate the usefulness of the approach. The quantum
transition is presented in Sec. IV as an advanced application
of circuit theory and is compared with a direct numerical
simulation of the Poisson kernel. A continuum Coulomb gas
model is used to characterize the various transport regimes
that are displayed in the diagram. A summary and conclu-
sions are presented in Sec. V.

II. STOCHASTIC MODEL

In this section we give a brief presentation of the stochas-
tic model used in this work. Although all numerical routines
used in this paper are entirely based on this model, we pro-
vide here only enough detail to make the interpretations of
the results presented in subsequent sections self-contained.
Additional information can be found in the cited references
and in Appendixes A and B. In Appendix A, we introduce
the resonance pole complex plane, which is the arena where
level interactions take place, and partial decay width ampli-
tudes, which are parameters that control the strength of the
coupling to the leads thereby affecting all transport observ-
ables. The combined effect of them is responsible for the
onset of the transition addressed in this paper. In Appendix B
we present an important discussion about the relevant time
scales in the problem.
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In the VWZ approach a central quantity is the S-matrix
formula below, that describes the coupling of the states in the
cavity with a continua of asymptotic free scattering states in
waveguides,

S�E� = 1 − 2	iW†Gr�E�W , �1�

in which Gr�E� is the retarded Green’s function defined as

Gr�E� = �E − Hcav − �r�−1. �2�

The Hamiltonian of the cavity, Hcav, is described by an
Ncav
Ncav random Hermitian matrix with real entries and

�r = − i	WW† = − i	�
p=1

M

WpWp
† �3�

is the self-energy function associated with particle exchange
between the cavity and M waveguides �terminals�. The cou-
pling matrix W is a nonrandom Ncav
Ntot rectangular ma-
trix, where Ntot=N1+ ¯ +NM is the total number of open
channels �Np is the number of open channels in terminal p�.
We assume absence of direct �nonresonant� reactions by im-
posing the orthogonality relation

�Wp
†Wq�nm =

�

	
�pq�nmwpn, �4�

where wpn�0 quantifies the coupling strength of resonance
states in the cavity with the scattering channel n in terminal
p and L=4� is the total length of the spectrum �bandwidth�.

The random Hamiltonian models the chaotic ergodic mo-
tion inside the cavity and is considered to be a member from
the Gaussian orthogonal ensemble �GOE�, which is appropri-
ate to describe systems with time-reversal symmetry. We
thus have the following basic ensemble averages:

��Hcav��
� = 0, �5�

and

��Hcav��
�Hcav���
�� =
�2

Ncav
������

� + ��
��
��� , �6�

which, in turn, yield the following asymptotic �Ncav�1� ex-
pression for the average retarded Green’s function:

�Gr�E�� =
��E�

�
�1 − �−1��E��r�−1, �7�

where

��E� = ��E� − i��E� =
E

2�
− i�1 − 	 E

2�

2

. �8�

From Eq. �7� we obtain a semicircle distribution for the reso-
nance energies �real part of the resonance poles�,

��E� = −
1

	
Im�Tr�Gr�E��� =

Ncav

	�
��E� . �9�

The meaning of the ensemble averages above is somewhat
subtle. In order to appreciate it one should bear in mind that
the stochastic approach models the universal local in spec-
trum features of realistic chaotic systems. This means that if

one wishes to compare the predictions of the stochastic
model with raw data one should perform a local energy av-
erage inside an interval that is sufficiently large to contain
many resonances but small enough so that the gross features
of the spectrum, such as the mean spacing of resonances,
does not vary appreciably. In this sense, global features such
the semicircle law should not be considered as valid predic-
tions of the stochastic model, albeit it may be consistently
used in intermediate calculations to obtain local in spectrum
properties.

Combining Eq. �7� with Eq. �1� we obtain an ensemble
average description of the optical �smooth� part of the scat-
tering matrix. In this time scale, the fraction of the incoming
flux that enters the cavity from channel n through terminal p
can be quantified by the following transmission coefficient
associated with an effective barrier at the cavity-waveguide
interface,

Tpn�E� � 1 − ��Snn
pp�E���2. �10�

From Eq. �7� we obtain

�Snm
pq �E�� = �pq�nm

1 − iwpn��E�
1 + iwpn��E�

�11�

and therefore

Tpn�E� =
2��E�

�pn + ��E�
, �12�

where �pn=cosh �pn and �pn=−ln wpn.

III. ASYMPTOTICS OF THE POISSON KERNEL AND
CIRCUIT THEORY

In this section we present in detail our main analytical
tool, which is basically an extended version of the two-
terminal case of Nazarov’s circuit theory �18�. The central
different feature of our formalism, in comparison with Naz-
arov’s approach, is the systematization of the subtle process
of determining the current-phase relations of the various cir-
cuit elements by means of the supersymmetric nonlinear �
model. Our presentation complements a previous short report
on this subject �17�. For the benefit of the reader, we have
compiled in Appendix C a number of important concepts and
results regarding the density of transmission eigenvalues,
that are somewhat scattered in the literature and which will
be used later to patch up a single unified picture of the math-
ematical representation of the system. It will also serve the
purpose of proving, by sheer comparison with several alter-
native approaches, the remarkably analytical convenience of
our method.

A. Circuit theory for the double-barrier chaotic cavity

The asymptotic limit, N1 ,N2�1, described in Appendix C
coincides with the physical semiclassical regime, in which
one neglects quantum interference corrections to the particle
propagation through the chaotic cavity. A simple conse-
quence of this result is the independence of the asymptotic
results on the symmetry parameter � �see Eq. �C8� and the
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statement below Eq. �C29��. This observation opens up the
possibility of implementing alternative approaches to deter-
mine ����. A particularly convenient procedure has the form
of a circuit theory and was introduced by Nazarov �18�. It is
basically a finite element approach, in which the system is
partitioned into a network described by a graph, whose edges
represent connectors and the vertices are nodes or terminals.
A pseudopotential � is assumed to have fixed values at both
terminals, �1=� and �2=0, and unknown values at the
nodes. Therefore each connector �i , j� is subject to a pseudo-
potential drop ��ij, which generates a pseudocurrent
Iij���ij� defined by

Iij���ij� = 

0

1

d�
sin���ij���ij���

1 − � sin2���ij/2�
, �13�

where �ij��� is the transmission eigenvalue density of the
connector. There is a conservation law for the pseudocurrent
passing through each node, which provide sufficient equa-
tions to determine the value of the pseudopotential at every
node.

The problem of determining ���� using two-terminal cir-
cuit theory proceeds as follows: �i� represent the system as a
graph, choosing the connectors to be simple enough so that
Iij���ij� is known; �ii� solve the equations for pseudocurrent
conservation and determine the pseudopotential at each
node; �iii� determine the current-phase relation I��� for the
whole network and using Eq. �C17� derive ����. Here we
shall need only two circuit elements: a diffusive conductor
and a barrier of arbitrary transparency. It is important to note
that in circuit theory the current-phase relation of all ele-
ments are taken as input, and therefore they must be derived
from a microscopic approach, such as the supersymmetric
nonlinear � model �used in this paper� or the more conven-
tional diagrammatic impurity average technique.

In this section, we shall rigorously derive the current-
phase relations of the circuit elements and prove the validity
of the pseudocurrent conservation formulas to describe the
system in the physical regime of interest. Independent nu-
merical evidence of these results will be presented in the next
sections. As a model for a chaotic cavity coupled to two
waveguides via barriers of arbitrary transparencies we use
the supersymmetric nonlinear � model for an identical sys-
tem with the cavity replaced by a disordered quasi-one-
dimensional conductor of length L and take in the end the
limit L→0. Equation �C12� is then replaced by �19�

�s�Q� =
 dQ�
 dQ�f1�Q,Q��Ws�Q�,Q��f2�Q�,Q0� ,

�14�

where s=2L /� and � is the localization length. The function
Ws�Q� ,Q�� is the diffusion kernel in C, i.e., it satisfies the
diffusion equation

��s − �Q�Ws�Q,Q�� = 0, �15�

where �Q is the Laplace-Beltrami operator in the coset space
C=U�1,1 �2� / �U�1 �1� � U�1 �1��, with delta function initial
condition

W0�Q,Q�� = ��Q − Q�� . �16�

A formal solution is given by following path-integral repre-
sentation,

Ws�Q,Q�� =
 DQ exp	 1

16s



0

1

dxStr��xQ�2
 , �17�

where DQ=�x=0
1 dQ�x� is the invariant integration measure,

Str denotes the supertrace, and we assume the following
boundary conditions Q�0�=Q� and Q�1�=Q. Note that, as
expected, the chaotic cavity corresponds to the zero length
limit of the disordered conductor, since �0�Q�
� lims→0�s�Q� coincides with ��Q� of Eq. �C12�.

This model can be used to determine the current-phase
relation of both elements in the circuit theory: the diffusive
conductor and the barrier. We start by obtaining the current-
phase relation of the diffusive conductor. First we eliminate
the effect of the barriers by imposing ideal contacts ��pn

=0� and taking N1 ,N2→�, then

fp�Q,Q�� → ��Q − Q�� , �18�

and from Eq. �14� we get �s
D�Q�=Ws�Q ,Q0�. Using the

eigenfunctions and eigenvalues of the radial part of the
Laplace-Beltrami operator �Q, we may harmonically decom-
pose �s

D�Q� as follows �19�:

�s
D�Q� = 1 + �cos �0 − cosh �1��

n=0

� 

0

�

d�nk


 Pn�cos �0�Pik−1/2�cosh �1�e−�nks, �19�

where d�nk= ��nk�−1�2n+1�k tanh�k	�dk is the integration
measure, �nk=k2+n�n+1�+1/4 is an eigenvalue of the
Laplace-Beltrami operator, Pn�x� is the Legendre polyno-
mial, and Pik−1/2�x� is the conical function.

For the pseudocurrent we find from Eqs. �C15� and �19�

Is
D��� = 2 sin ��

n=0

� 

0

�

d�nkPn�cos ��Pik−1/2�cos ��e−�nks.

�20�

For s�1 we get the following expansion:

Is
D��� =

�

s
−

s

2

d

d�
� 1

�
	 1

�
− cot �
� + O�s2� . �21�

Let us now turn to the current-phase relation of the barri-
ers. We eliminate the contribution of the diffusive conductor
by taking s→0 in Eq. �14�. We then isolate barrier 1, by
taking the limit N2→�, which implies f2�Q� ,Q0�→��Q�
−Q0�. The integral becomes trivial and yields

�B1�Q� = �
n=1

N1 	 cosh �1n + cos �0

cosh �1n + cosh �1

 . �22�

Using Eq. �C15�, we obtain our final answer,
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IB1��� = �
n=1

N1 sin���T1n

1 − T1nsin2��/2�
. �23�

A similar analysis yields the current-phase relation of barrier
2,

IB2��� = �
n=1

N2 sin���T2n

1 − T2nsin2��/2�
. �24�

We are now in position to implement the equations for
pseudocurrent conservation. Our system consists of a diffu-
sive conductor sandwiched between two barriers. The net-
work is a linear graph with two nodes and three connectors,
which implies

Is��� = IB1�� − �1� = Is
D��1 − �2� = IB2��2� , �25�

where �1 and �2 are the values of the pseudopotential �, at
nodes 1 and 2, respectively. In the semiclassical regime,
where s�1, we need only to keep the first term in Eq. �21�,
Is

D����� /s, and we eliminate �1 through �1=�2+sIB2��2�,
so that IB1��−�2−sIB2��2��= IB2��2�. Define ���−sIB2��2�,
then

Is��� =
� − �

s
= I0��� , �26�

where I0��� is the pseudocurrent through an auxiliary net-
work, in which the diffusive conductor has been removed
�17�. The pseudocurrent conservation equations for this aux-
iliary network is, after obvious renaming of the phase vari-
ables, given by

I0��� = IB1�� − �� = IB2��� . �27�

From Eq. �26� we get Is���= I0��−sIs����, which is the so-
lution of the nonlinear differential equation

�Is

�s
+ Is

�Is

��
= 0, �28�

with initial condition Is=0���= I0���. This differential equa-
tion was derived in Ref. �17� under more general conditions
�conductors of arbitrary geometry� and was shown to be
equivalent, for quasi-one-dimensional conductors, to the
Dorokhov-Mello-Pereyra-Kumar �DMPK� scaling equation
�15� for the density of transmission eigenvalues in the semi-
classical limit.

In view of our model construction, we conclude that Eqs.
�23�, �24�, and �27� define a circuit theory for a chaotic cav-
ity coupled to waveguides via two barriers of arbitrary trans-
parencies. This is the central result of this section. It repre-
sents a formal proof of the concatenation principle used in
Ref. �17�. This crucial information was provided by Eq. �14�
and by the fundamental notion that the universal statistical
description of an open chaotic cavity can be obtained by
taking the zero length limit of an identical open system with
the cavity replaced by a disordered conductor of finite
length. The final conclusion is the realization that circuit
theory is an exact representation of the information con-
tained in the saddle point equation of the zero-dimensional
supersymmetric nonlinear � model. A recent striking confir-

mation of this fact can be found in Ref. �20�, in which circuit
theory equations were shown to agree with the predictions of
a diagrammatic analysis of the Poisson kernel in all ranges of
the physical parameters.

B. Simple applications of circuit theory

In this section we present further improvements in the
formalism of circuit theory and demonstrate its usefulness by
working out a few simple examples. We start by introducing
a different pseudocurrent through the formula

K�x� = �
j
� sinh 2x

cosh 2x + cosh 2xj
� =

i

2
I�− 2ix� , �29�

in which the random variables xj are related to the transmis-
sion eigenvalues by � j =1/cosh2xj. Introducing the average
level density 
�x�=� j���x−xj�� we may rewrite Eq. �29� as

K�x� = 

0

�

dy

�y�sinh 2x

cosh 2x + cosh 2y
. �30�

This generating function was presented in Ref. �21�, where it
was used to derive average and variance formulas of linear
statistics in the context of the DMPK theory. It can be seen
as an integral transform with the kernel

sinh 2x

cosh 2x + cosh 2y
= 


0

�

dk
sin kx cos ky

sinh�k	/2�
. �31�

Using Eq. �31� we may invert Eq. �30� to obtain


�x� =
2

	



0

�

dk sinh�k	/2�K̃�k�cos kx , �32�

where

K̃�k� =
2

	



0

�

dxK�x�sin kx , �33�

or simply


�x� =
2

	
Im�K�x + i	/2 − i0+�� . �34�

The density of transmission eigenvalues ���� can be obtained
from 
�x� through the formula

���� =

�cosh−1�1/����

2��1 − �
. �35�

From Eqs. �23�, �24�, and �30� we obtain the following rela-
tion for the pseudocurrent through a barrier with transmis-
sion coefficients Tpn=sech2��pn /2�:

Kp�x� = �
n=1

Np sinh 2x

cosh 2x + cosh �pn
. �36�

The circuit theory equations for a chaotic cavity sandwiched
between two barriers becomes simply
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K�x� = K1�x − y� = K2�y� , �37�

where y is the unknown phase variable for the pseudopoten-
tial at the intermediate node.

1. Chaotic cavity with ideal contacts

A clean quantum point contact is one of the simplest re-
alization of a chaotic cavity with ideal contacts. In circuit
theory we set Tpn=1��pn=0� in Eq. �36� to obtain

Kp�x� = Np
sinh 2x

1 + cosh 2x
= Nptanh x , �38�

which when inserted into Eq. �37� yields

K�x� = N1tanh�x − y� = N2tanh y . �39�

Using the identity

tanh�x − y� =
tanh x − tanh y

1 − tanh x tanh y
, �40�

we obtain the algebraic relation

� − �

1 − ��
= a� , �41�

where �=tanh y ,�=tanh x, and a=N2 /N1. Equation �41� im-
plies the quadratic equation

a��2 − �1 + a�� + � = 0, �42�

whose physical solution is

�+ =
1 + a

2a�
�1 + �1 − ���0�2� , �43�

where �0=tanh x0=2�a / �1+a�. Inserting Eq. �43� into Eq.
�39� yields

K�x� =
N1 + N2

2
coth x�1 − �1 − tanh2x tanh2x0� . �44�

Using Eq. �34� we obtain


�x� =
N1 + N2

	
�tanh2x0 − tanh2x, 0 � x � x0, �45�

which after substituting into Eq. �35� yields Eq. �C29� as
expected and in agreement with Ref. �18�.

2. Chaotic cavity with symmetric barriers

This system can be described in circuit theory by taking
N1=N=N2 and Tpn=T=sech2�� /2� in Eq. �36�, which gives

Kp�x� = N
sinh 2x

cosh 2x + cosh �

=
N

2
�tanh	x +

1

2
�
 + tanh	x −

1

2
�
� . �46�

Inserting Eq. �46� into Eq. �37� we get the following poly-
nomial equation:

���2 − 2� + ����1 − T��2 + T�� − 1� = 0, �47�

where �=tanh y and �=tanh x. The physical root is given by

�− =
1

�
�1 − �1 − �2� , �48�

which yields the following pseudocurrent:

K�x� =
NT sinh x

2 − T + T cosh x
�49�

and average level density


�x� =
2N

	

T�2 − T�cosh x

4�1 − T� + T2cosh2x
. �50�

Inserting Eq. �50� into Eq. �35� we find

���� =
NT�2 − T�

	�T2 − 4T� + 4�����1 − ��
, �51�

which is in precise agreement with Eq. �C30�, derived in Ref.
�22� from a diagrammatic technique to calculate the asymp-
totics of the Poisson kernel, for the case of barriers with
equivalent channels. We remark that this result cannot be
obtained from Nazarov’s formulation of circuit theory �18�.
One needs the new input provided by the supersymmetric
nonlinear � model, which is incorporated in our extended
version in order to establish a direct link with the Poisson
kernel.

3. Chaotic cavity with two tunnel junctions

We describe this system in circuit theory by using the
condition Np=N and Tpn=Tp=sech2��p /2��1 in Eq �36�.
We find

Kp�x� =
1

2
NTpsinh 2x . �52�

Substituting Eq. �46� into Eq. �37� we get

sinh�r − s� = � sinh s , �53�

where r=2x ,s=2y, and �=T2 /T1. The solution reads

sinh s =
sinh r

�1 + 2� cosh r + �2
, �54�

which, in turn, gives the following expression for the
pseudocurrent:

K�x� =
NT1T2sinh 2x

2�T1
2 + T2

2 + 2T1T2cosh 2x
. �55�

For the average level density we find


�x� =
2NT1T2

	�T1 + T2�
sinh x

�tanh2x − tanh2x0

, x0 � x , �56�

where tanh x0= �T1−T2� / �T1+T2�. Inserting Eq. �56� into Eq.
�35� yields

���� =
NT1T2

	�T1 + T2�
1

�3/2��0 − �
, 0 � � � �0, �57�

where �0=1−tanh2x0=4T1T2 / �T1+T2�2, in agreement with
Nazarov’s result �18�. The striking difference between Eqs.
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�51� and �57� is the absence of the inverse square-root sin-
gularity in the latter when T1�T2. The physical interpreta-
tion of this result and some related phenomena will be the
subject of the next sections, where it will be associated with
a quantum transition.

IV. FORMATION OF FABRY-PEROT RESONANCES AS A
QUANTUM TRANSITION

We are now in position to discuss the emergence of the
inverse square-root singularity in ���� at �=1. First, observe
from the examples worked out in the previous section that
this singularity is regularized by the change of variables, �
=sech2x, so that the new density 
�x� is finite at x=0 if ����
has an inverse square-root singularity at �=1, and vanishes
otherwise. Therefore for symmetric barriers we find


�0� =
2NT

	�2 − T�
�58�

for all values of T, while for tunnel junctions


�0� = �NT/	; T1 = T = T2

0; T1 � T2.
� �59�

In this section we shall demonstrate that this regularizing
property of 
�0� extends to all values of the ratio T1 /T2.
Therefore it can be used as a kind of order parameter to the
quantum transition associated with the emergence of the in-
verse square-root singularity in ���� at �=1, which corre-
sponds to the formation of Fabry-Perot �FP� modes between
the barriers, implying that 
�0� could be interpreted as a
density of FP resonances. We shall start by considering the
simplest case in which the quantum transition occurs, a cha-
otic cavity with an ideal contact and a barrier of arbitrary
transparency, and only later study the most general situation.

A. Chaotic cavity with an ideal contact and a barrier of
arbitrary transparency

The description of this system in circuit theory is straight-
forward and follows the procedure thoroughly explained in
last section. We set T1=1 ,T2=T=sech2�� /2�, and N1=N
=N2 in Eq. �36� to obtain

K1�x� = N tanh x �60�

and

K2�x� =
N

2
�tanh	x +

1

2
�
 + tanh	x −

1

2
�
� , �61�

which after inserting into Eq. �37� yields

2 tanh�x − y� = tanh	y +
1

2
�
 + tanh	y −

1

2
�
 . �62�

This transcendental equation can be transformed into the fol-
lowing cubic equation:

�1 − T��3 + ��2T − 1�tanh x��2 − �1 + T�� + tanh x = 0,

�63�

where �=tanh y.

Before attempting the exact solution let us first construct a
solution as a power series in x. Inserting the expansions

� = ax + bx2 + cx3 + ¯ ,

tanh x = x −
1

3
x3 + ¯

into Eq. �63� we obtain a=1/ �1+T� , b=0, and c=−�1
+3T�1−T�+T3� / �3�1+T�4�. This yields the following power
series for the pseudocurrent:

K�x� =
NTx

1 + T
−

NTx3�T3 + 3T − 2�
3�1 + T�4 + ¯ . �64�

This expansion can be used to calculate the average of some
transport observables, such as the cumulants of the charge
counting statistics. From Eq. �29� we may define the aver-
ages

hk+1 � �
j

�� j
k+1� = � �− 1�k2k

k!

dkH�x�
d�cosh 2x�k�

x=0
, �65�

where H�x��2K�x� / sinh 2x. From Eqs. �64�, �C2�, and �65�
we obtain the average dimensionless conductance

�g� = h1 =
NT

1 + T
�66�

and the average shot-noise power

�p� = h1 − h2 =
NT�1 + T2�

�1 + T�4 . �67�

Both expressions are in perfect agreement with Refs. �20,23�.
The exact solution for the pseudocurrent reads

K�x� =
NT�sol

1 − �1 − T��sol
2 , �68�

where

�sol = 2�− Q cos��/3� −
�2T − 1�tanh x

3�1 − T�
, �69�

with cos �=−R /�−Q3, in which

Q =
3�T2 − 1� − �2T − 1�2tanh2x

9�1 − T�2 �70�

and

R =
�9�T − 1��T2 − T + 1� − �2T − 1�3tanh2x�tanh x

27�1 − T�3 .

�71�

Let us now turn to the average level density 
�x�. We start

by introducing the modified pseudocurrent K̃�x��K�x
+ i	 /2�, then from Eq. �68�

K̃�x� =
NT�̃sol

1 − �1 − T��̃sol
2

, �72�

where �̃sol is the complex solution of
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�1 − T��3 + ��2T − 1�coth x��2 − �1 + T�� + coth x = 0,

�73�

with positive imaginary part, so that


�x� =
2

	
Im�K̃�x − i0+�� . �74�

We find

�̃sol = −
A + B

2
−

�2T − 1�coth x

3�1 − T�
+ i

�3�A − B�
2

, �75�

where A= �R+���1/3 ,B=−Q /A, and �=Q3+R2. The quanti-
ties Q and R are given, respectively, by

Q =
3�T2 − 1� − �2T − 1�2coth2x

9�1 − T�2 �76�

and

R =
�9�T − 1��T2 − T + 1� − �2T − 1�3coth2x�coth x

27�1 − T�3 .

�77�

In Fig. 1, we show the density 
�x� for several values of
the barriers’ transparency, T. The symbols �circle, square,
triangle, and inverted triangle� correspond to numerical cal-
culations using the Poisson kernel generated from the ran-
dom Hamiltonian approach described in Sec. II. The numeri-
cal procedure is straightforward but quite demanding, since it
requires inversion of large Ncav
Ncav matrices for each re-
alization. We remark that in order to reach the asymptotic
behavior described by 
�x�, one needs a large number, Ncav
�1, of resonances and a large number, Ntot�1, of open

scattering channels, besides the condition for the emergence
of the Poisson kernel, Ncav�Ntot, which according to Eq.

�B9� implies a large mean delay time, Q̄�1.
This explains the noise in the data as a consequence of

finite matrix-size effects. Fortunately the numerical imple-
mentation of the analytical solution is noiseless and the
agreement between both data is excellent. Note that 
�0�
=0 for T�0.5 and 
�0��0 for 0.5�T�1, indicating that

�0� plays a role similar to an order parameter in second
order phase transitions. Indeed, from the analytical solution,
we find


�0� = ��2N/	��2T − 1; 0.5 � T � 1

0; 0 � T � 0.5.
� �78�

Another interesting feature of Fig. 1 that can be explicitly
extracted from the exact solution is the value of the level, x0,
at which the average density vanishes for 0�T�0.5, i.e.,
where 
�x0�=0. We find

x0 = tanh−1�� �1 − 2T�3

�1 − T��1 + T�3� , �79�

which agrees quite well with the numerical estimate.

B. Chaotic cavity with two barriers of arbitrary transparencies

This is the most general situation for the case of equiva-
lent channels. In the language of circuit theory, we set Tp
=sech2��p /2� and N1=N=N2 in Eq. �36� and get

Kp�x� =
N

2
�tanh	x +

1

2
�p
 + tanh	x −

1

2
�p
� . �80�

Inserting Eq. �80� into Eq. �37� yields

tanh	x − y +
1

2
�1
 + tanh	x − y −

1

2
�1
 = tanh	y +

1

2
�2


+ tanh	y −
1

2
�2
 , �81�

which can be written as the following algebraic equation for
the variable �=tanh y:

�T1�1 − T2�tanh x��4 − �3T1T2tanh x��2 + ��T1T2 + T2

− T1�tanh2x + 2T1T2 − T1 − T2��3 + ��T1T2 + T1

− T2�tanh2x + T1 + T2�� − T1tanh x = 0.

With the physical solution, denoted �sol, we can write the
exact pseudocurrent as

K�x� =
NT2�sol

1 − �1 − T2��sol
2 . �82�

From Eqs. �82� and �65� we derive the following expressions
for the average conductance and shot-noise power, respec-
tively:

�g� = N
T1T2

T1 + T2
, �83�

and

FIG. 1. Level density 
�x� for T1=1 and T2=1 �circle�, T2

=0.8 �square�, T2=0.5 �triangle�, and T2=0.15 �inverted triangle�.
The full lines are exact numerical solutions of Eq. �74�. Note the
transition point at T2=0.5.
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�p� = N
T1T2�T1

2 + T2
2�

�T1 + T2�4 �T1 + T2 − T1T2� . �84�

These formulas are also in agreement with Refs. �20,23�.
Consider now the average level density. The modified
pseudocurrent is given by

K̃�x� =
NT2�̃sol

1 − �1 − T2��̃sol
2

, �85�

where �̃sol is the physical solution of the following polyno-
mial equation:

�T1�1 − T2�tanh x��4 − �3T1T2tanh x��2 + ��2T1T2 − T1

− T2�tanh2x + T2 − T1 + T1T2��3 + ��T1 + T2�tanh2x + T1

− T2 + T1T2�� − T1tanh x = 0.

It is a simple exercise to verify that all previously considered
cases can be obtained directly from the above general equa-

tion. The analytical expression of the physical solution �̃sol is
too cumbersome to be reproduced here, but it can be easily
generated and manipulated by means of a computer algebra
system. In particular, we were able to calculate the following
expression:


�0� =
2N

	
Re	��T1T2�2 − �T1 − T2�2

T1 + T2 − T1T2

 . �86�

A three-dimensional plot of 
�0� is shown in Fig. 2. Note that
the support of 
�0� defines a connected region in the T1T2

plane. Interpreting 
�0� as an order parameter implies that
the boundary of this region is given by lines of transition
points. To be more precise, consider the new parameters �0
= �1+T1� / �1−T1� and �=T2�1+T1� /T1 and rewrite 
�0� in
the form


�0� =
2N

	 ���0�� − 1���0 − ��
� + �0

; 1 � � � �0

0; otherwise.
� �87�

It is now easy to read off the equations �=1 and �=�0 for the
boundary lines at which 
�0�=0. In Fig. 3, we plot a diagram
in the T1T2 plane exhibiting these transition lines. In the next
subsections we shall discuss a characterization of each region
in this diagram.

C. Continuum Coulomb gas model

In this subsection we present a simple physical system
that can be used to characterize the various regions in the
diagram of Fig. 3. It consists of a one-component plasma and
is described by the Hamiltonian of a two-dimensional con-
tinuum Coulomb gas

H =
 d�����v��� +
1

2

 d�
 d��u��,������������ ,

where u�� ,���=−ln��−��� is the interaction term and v��� is
the effective potential of a compensating background of fixed
charge distribution. The equilibrium charge density of this
plasma model was discussed in Appendix C and was shown
to satisfy the following singular integral equation:

FIG. 2. Density of Fabry-Perot resonances, 
�0�, as a function
of the transmission coefficients T1 and T2.

FIG. 3. Diagram illustrating the transport regimes as a function
of the tunnel probabilities. The solid lines represent the transition
lines �=�0 �case �iv�� and �=1 �case �ii��. The region above, be-
tween and below these solid lines stand for cases �v�, �iii�, and �i�,
respectively. The dashed line represents the particular case T1=T2,
whereas the dotted lines are guides to the eye at T1=0.5 and T2

=0.5.
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P

0

�

d��
�����
� − ��

=
dv���

d�
. �88�

The information contained in Eq. �88� can be nicely accom-
modated in the resolvent function

G�z� = 

0

�

d�
����
z − �

, �89�

from which the average density and the effective confining
potential can be obtained, through the formulas

���� =
1

	
Im�G�� − i0+�� , �90�

and

dv���
d�

= Re�G�� − i0+�� . �91�

It is possible to connect the resolvent function G�z� with the
pseudocurrent K�x� of circuit theory by performing the fol-
lowing change of variables: �=sinh2x, in Eq. �89�, so that

G�z� = 

0

�

dx

�x�

z − sinh2x
=

− K�cosh−1��− z��
�z�1 + z�

. �92�

Let us illustrate the usefulness of this formula by considering
some simple examples. For a chaotic cavity with symmetric
barriers the exact expression for the pseudocurrent is given
in Eq. �49�, which after inserting into Eq. �92� yields

G�z� =
− NT

�− z�2 + ��− z − 1�T�
. �93�

Substituting Eq. �93� into Eqs. �90� and �91� yields, respec-
tively,

���� =
NT�2 − T�

	��2 − T�2 + T2����
, �94�

and

v��� = N ln��2 − T�2 + T2�� . �95�

It is interesting to observe the behavior of G�z� for small
values of its argument, i.e., �z��1. We find

G�z� � −
NT

2 − T
�− z�−1/2 = −

	
�0�
2�− z

, �96�

which implies

���� �
NT

	�2 − T���
=


�0�
2��

, � → 0, �97�

indicating, since 
�0��0, a gapless transmission spectrum.
In order to establish a contrast, consider now the case of
tunnel barriers. Inserting Eq. �55� into Eq. �92� we find

G�z� =
− NT1T2

��T1 − T2�2 − 4T1T2z
, �98�

which, in turn, implies the following average density:

���� =
N�T1T2�1/2

2	�� − �0

, �99�

where the nonvanishing value �0= �T1−T2�2 / �4T1T2� signals
the appearance of a gap in the spectrum, i.e., 
�0�=0 for x
�x0=sinh−1���0�. In the small argument limit we find a con-
stant,

G�z� � −
NT1T2

�T1 − T2�
, �z� → 0. �100�

From the examples above, we anticipate the central role
played by the resolvent function G�z� in distinguishing the
various regimes displayed in the diagram of Fig. 3. A full
account of the generic case, with arbitrary T1 and T2, is given
below.

Consider, for convenience, the variables �=T2�1+T1� /T1

and �0= �1+T1� / �1−T1� and take �0 to be fixed. We identify
five different regimes, which we itemize as follows.

(i) 0���1(gapped phase I). This regime is characterized
by a constant resolvent function in the small argument re-
gion,

G�z� �
NT1T2

T1T2 + T2 − T1
, �z� → 0. �101�

The average density has a finite gap, i.e., 
�x�=0 for x�x0,
where x0 is a function of both T1 and T2.

(ii) �=1 (transition line I). In this regime, the resolvent
acquires a universal power-law behavior,

G�z� � − N	T1
2

2

1/3

�− z�−1/3, �z� → 0, �102�

which implies the following expression for the average den-
sity:

���� �
�3N

2	
	 T1

2

2�

1/3

, � → 0. �103�

Accordingly, the average density of transmission eigenvalues
develops a power-law singularity,

���� �
�3N

2	
	 T1

2

2�1 − ��

1/3

, � → 1. �104�

The density 
�x�, on the other hand, vanishes according to
the power-law behavior


�x� �
�3N

	
	T1

2x

2

1/3

, x → 0, �105�

which is consistent with the corresponding graph displayed
in Fig. 1.

(iii) 1����0 (gapless phase). In this regime the average
level density 
�x� is nonvanishing at x=0 and the resolvent
function satisfies

G�z� � −
	
�0�

2
�− z�−1/2, �z� → 0, �106�

which yields the singularity
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���� �

�0�
2��

, � → 0. �107�

For the average density of transmission eigenvalues this im-
plies the existence of an inverse square-root singularity at �
=1,

���� �

�0�

2�1 − �
, � → 1. �108�

The finite value of 
�0� is given by


�0� =
2N

	

��T1T2�2 − �T1 − T2�2

T1 + T2 − T1T2
�109�

in agreement with Eq. �86�.
(iv) �=�0 (transition line II). This regime is very similar

to that of item �ii�. The resolvent function satisfies

G�z� � − N	T2
2

2

1/3

�− z�−1/3, �z� → 0, �110�

which implies, as before, the emergence of the universal ex-
ponent 1 /3 in all density functions.

(v) ���0 (gapped phase II). Similar to the gapped phase
I, this regime is characterized by a constant resolvent func-
tion in the small argument region,

G�z� �
NT1T2

T1T2 + T1 − T2
, �z� → 0, �111�

and a finite gap in the average density 
�x�.

D. Physical discussion

From the quantitative analysis of the last subsection we
conclude that the formation of Fabry-Perot resonances in a
double-barrier chaotic billiard, characterized by the emer-
gence of an inverse square-root singularity in the average
density of transmission eigenvalues ���� at �=1 possesses a
number of universal features that strongly resembles second-
order phase transitions in statistical mechanics. The average
density 
�0� is nonvanishing only in the gapless phase ap-
pearing to be an order parameter and at both transition lines
�=1 and �=�0 ,
�x� vanishes according to a power law with
a universal exponent. We can make the analogy more strik-
ing by defining exponents � ,�, and � through the relations


�0� � �t�� �112�

in the gapless phase,


�x� � x1/� �113�

at the transition lines, and

G�0� � �t�−� �114�

in the gapped phases, where t��−�c, with �c=1 at transition
line I and �c=�0 at transition line II. From the results of the
previous subsection we conclude that �=1/2 ,�=3, and �
=1, which satisfy Widom’s scaling relation �=���−1�, even
though there is no obvious reason for its validity in the

present context. Note that the above values of the exponents
coincide with those of classical mean field theory of second
order phase transitions. This is a clear consequence of the
connection between circuit theory and the saddle-point
�mean-field� equation of the zero-dimensional nonlinear �
model in the asymptotic limit of large number of scattering
channels, N1 ,N2�1.

A second remarkable analogy follows from the analysis,
due to Chalker and Bernhardt �24,25�, of the Anderson local-
ization transition, a well known bona-fide second order phase
transition. The starting point is the Landauer formula for the
dimensionless conductance g=�i=1

N �i. Consider the change of
variables, �i=sech2�Lxi�, where L is the system’s length. The
average conductance becomes

�g� = 

0

�

dx
2
�x�

cosh�2Lx� + 1
, �115�

where 
�x�=�i=1
N ���x−xi��. We are interested in the scaling

limit, L→�, with N /L fixed, in which 
�x� tends towards the
density of Lyapunov exponents. In this case we may use the
approximation

�g� � 4

0

�

dxe−2Lx
�x� . �116�

In the metallic phase, 
�0� is nonvanishing and thus from Eq.
�116� we find

�g� �
2
�0�

L
=

N�

L
, �117�

which is Ohm’s law and � denotes the conductivity. In the
insulating phase, we have 
�0�=0 for x�x0=1/�, where � is
the localization length, so that

�g� � e−2L/�, �118�

as expected for an Anderson insulator. At the mobility edge
�or transition point� we may try the interpolation ansatz


�x� � Nx�, �119�

which yields

�g� �
N

L�+1 =
Lt

d−1

L�+1 , �120�

where Lt is the transverse length of the system. On physical
grounds one expects the average conductance to be scale
invariant at the mobility edge, i.e., invariant under the trans-
formation, L→bL and Lt→bLt, for arbitrary scale factor b.
From Eq. �120� we conclude that this is only possible if �
=d−2. In summary, we have


�x���
�0�; x → 0 �metallic phase�
�xd−2; x → 0 �mobility edge�
=0; x � 1/� �insulating phase�.

�
For the sake of comparison we also present a summary of the
results for the quantum transition studied in this paper
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�x���
�0�; x → 0 �gapless phase�
�x1/3; x → 0 �transition line�
=0; x � x0 �gapped phase�.

�
The obvious similarities between these results bring addi-
tional evidence that our quantum transition might be classi-
fied as a kind of second order phase transition. For a com-
plete proof, however, it would be necessary to develop the
analog of Landau theory of phase transitions. Since the usual
route to derive the Landau expansion, via the physical ther-
modynamic potential, is not available in our problem, it is
not clear, at this moment, how to justify such an expansion
for our transition.

Some insight can be gained from a more detailed analysis
of the underlying degrees of freedom, which are resonance
poles and resonance wave functions. As we have demon-
strated, circuit theory provides an exact account of the
asymptotic behavior of the average transmission eigenvalue
density throughout the whole T1T2 diagram. This approach,
however, has no access to the underlying mechanism driving
the formation of Fabry-Perot modes, which takes place in the
resonance pole complex plane, presented in Appendix A. In
this language, the problem can be formulated as follows. The
transmission eigenvalues, � j, can be defined as solutions to
the following eigenvalue equation:

�
m

Anm�m
�j� = � j�n

�j�, �121�

where Anm is a random Hermitian matrix defined as

Anm = �
�
k

� 1n�
r � 2k


l �� 1m

r � 2k�

l �*

	�� −
i

2
��
	�
 +

i

2
�

 = �Amn�*. �122�

The partial decay width amplitudes � pn�
r,l are random num-

bers defined in Eq. �A7� and must satisfy the sum rules

�
�

� pn�
r �� pn�

l �* = 2�wpn �123�

and

�
pn

�� pn�
r,l �2 = ��a�

r,l, �124�

which establishes a statistical interaction between eigenvec-
tors and eigenvalues in this problem. This correlation could
be the reason for the stability of FP states in the case of
symmetric barriers. The transmission coefficients of the bar-
riers, Tpn, can be connected to the fixed parameters, wpn of
Eq. �123�, via the relation Tpn=4wpn / �1+wpn�2.

From the analysis of Ref. �14�, we know that the reso-
nances form a dense strongly interacting cigar-shaped cloud
located below the real axis and stretched alongside it. The
precise form of the joint distribution of resonance position is
known exactly for systems with broken time-reversal sym-
metry with an arbitrary number of open channels and reso-
nances �26�. Interestingly, in the limit of large number of
open channels it was shown �26� that the n-point correlation
function exhibits a Ginibre-like form, i.e., it may be de-
scribed to a two-dimensional one-component plasma with a

repulsive Coulomb interaction and a nonuniform density.
Our problem thus concerns finding the statistical conditions
for the appearance of a very large number of transmission
eigenvalues close to 1, � j =1, associated with this strongly
interacting resonance cloud. Physically, it would explain the
formation and stability of FP states between the barriers and
answer the question of what competing effects in the reso-
nance plasma can turn their appearance into a phase transi-
tion. A similar question was addressed in Ref. �13� in the
context of the resonance trapping phenomena. From the form
of the random Hermitian matrix Anm, we can see that this
problem is quite unconventional, since it involves correla-
tions between both eigenvectors and eigenvalues. We are not
aware of any effective analytical method to deal with such
problems and numerical simulations appear to be the only
way to advance. Solving this open question is one of the
challenges that we leave out for future investigations.

Concerning experimental verification of our predictions in
noninteracting chaotic billiards, it is important to note that
the transition can only affect observables that depend on the
overall shape of the average transmission eigenvalue density,
such as the characteristic function of charge counting statis-
tics �27�. For weakly interacting quantum dots, it can be
shown that the formation of Fabry-Perot resonances leads to
the appearance of a different universality class for the low-
voltage low-temperature differential conductance �an anoma-
lous power-law I-V characteristic�, thus extending the classi-
fication put forward in Ref. �16�. Further work in this
direction is in progress and will be published elsewhere �28�.

V. SUMMARY AND CONCLUSIONS

Quantum scattering through chaotic billiards is a rich and
fascinating subject with multiple facets. Its universal features
can be successfully described by stochastic models, such as
the VWZ approach and random-matrix theory. Depending on
the nature of the quantities to be studied, there may be sev-
eral analytical and numerical techniques to choose from,
with varying degrees of mathematical convenience and so-
phistication. It is often quite hard to connect them in a single
unified approach to try and get the best of all worlds. The
analytical method presented in this paper has, to some extent,
achieved such a unification regarding a particular quantity:
the average density of transmission eigenvalues. The method
itself can be classified as an extended version of the two-
terminal case of Nazarov’s circuit theory, but it also com-
bines nicely the saddle-point structure of the supersymmetric
nonlinear � model with the information content of the dia-
grammatic approach to the asymptotics of the Poisson ker-
nel.

Using this interesting technique, we managed to reduce
the calculation of the semiclassical asymptotic form of the
average density of transmission eigenvalues, ����, to a poly-
nomial equation of forth degree. The resulting expressions
include the effects of two barriers of arbitrary transparencies,
located at interfaces between the cavity and waveguides.
Careful analysis of ���� revealed the existence of three dif-
ferent transport regimes, depending on the ratio of the trans-
mission coefficients of the barriers. The rationale of these
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regimes could be accommodated in the language of second
order phase transitions, with the density of unit transmission
eigenvalues playing the role of an order parameter. The as-
sociated quantum transition could thus be related to the for-
mation of Fabry-Perot modes between the barriers. A con-
tinuum Coulomb gas model was presented as a theoretical
tool to interpret this transition as a change in the equilibrium
configuration of the plasma due to singular changes in the
background density of fixed charges. This procedure led to a
characterization of the transition in terms of a resolvent func-
tion and certain universal exponents, which were interpreted
as having mean field values of an underlying theory of sec-
ond order phase transition. The dimensional independence of
the exponents, typical when critical fluctuations are irrel-
evant, could be traced back to the ergodic hypothesis adopted
to model the chaotic dynamics in the cavity.

We leave as a challenge to future research the derivation
of a full-fledged theory of phase transition for the transmis-
sion eigenvalue equation in terms of resonance poles and
partial decay width amplitudes.
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APPENDIX A: RESONANCE POLE COMPLEX PLANE

The most fundamental phenomenon associated with an
open quantum system is the decay of an initial population of
bound states into a set of scattering channels. In a scattering
description, this decay function can be understood in terms
of resonance states, characterized by the statistical properties
of the S-matrix poles in the complex energy plane. These
poles are characterized by both an energy �real part� and a
width �twice the imaginary part�. In the regime of chaotic
scattering these poles are densely packed and exhibit univer-
sal interactions, which manifest itself as avoided crossings
when the poles acquire a trajectory in the complex energy
plane due to the influence of some tunable external param-
eter. A complete stochastic model for the statistical properties
of resonance poles is still not available, although some par-
tial results have proved be to very useful. The subject as a
whole, is part of ongoing efforts to develop analytic tools to
study weak non-Hermitian random-matrix models �29�. In
this appendix, we shall introduce the resonance eigenvalue-
eigenvector representation for various quantities of interest.
This language will be used later to discuss possible underly-
ing mechanisms of the quantum transition that is the main
subject of this paper.

Let ���
r,l� denote, respectively, right and left eigenvectors

of the non-Hermitian effective Hamiltonian Hef f =Hcav+�r,
thus

Hef f���
r � = 	�� −

i

2
��
���

r � , �A1�

and

���
l �Hef f

† = 	�� −
i

2
��
���

l � . �A2�

The eigenvectors satisfy the following completeness:

1 = �
�

���
r ����

l � = �
�

���
l ����

r � �A3�

and biorthogonality relations

���
l ��


r� = ��
. �A4�

Furthermore, one can show that

a�
r,l � ���

r,l���
r,l� � 1, �A5�

which implies the identity

Im����
r,l�Hef f���

r,l�� = −
1

2
��a�

r,l. �A6�

We may define new coupling parameters, or partial decay
width amplitudes,

� pn�
r,l � �2	�n�Wp

†���
r,l� , �A7�

in which �n� denotes open-channel states in the pth wave-
guide. From Eqs. �A6� and �A7� we obtain the following
important sum rule:

��a�
r,l = �

p=1

M

�
n=1

Np

�� pn�
r,l �2 = �

p=1

M

���
r,l��p���

r,l� , �A8�

where �p�2	WpWp
†.

In this representation the S matrix acquires a rather simple
form,

Snm
pq �E� = �pq�nm − i �

�=1

Ncav � pn�
r �� qm�

l �*

E − �� +
i

2
��

, �A9�

which can be the basis of much insight. When the number of
resonances, Ncav, tends to infinity with the number of open
scattering channels being kept fixed the S-matrix elements
Snm

pq �E� tend towards a stationary �with respect to energy
shifts� universal distribution: the Poisson kernel. This limit is
akin to the thermodynamic limit of statistical mechanics and
accordingly there is an underlying law of large numbers tak-
ing control of the emerging features. This can be nicely for-
malized in the language of information theory by using a
maximum entropy principle.

Likewise, transport coefficients, such as the dimensionless
multiterminal conductance Cpq�E�, defined as

Cpq�E� � Tr��pGr�E��qGa�E�� , �A10�

can be written as

Cpq�E� = �
�
nm

� pn�
r � qm


l �� pn

r � qm�

l �*

	E − �� +
i

2
��
	E − �
 −

i

2
�

 ,

�A11�

and tends towards a universal multivariate stationary distri-
bution as Ncav→�. Note that the statistical properties of
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Cpq�E� are determined by both resonance positions and par-
tial decay width amplitudes. Obtaining this distribution is an
ongoing challenge for current analytical techniques. The en-
semble average �Cpq�E�� for systems with unitary and or-
thogonal symmetries was calculated in Refs. �30,31�, respec-
tively, using the supersymmetry method. Unitarity of the S
matrix implies the following sum rule:

�
pq

Cpq�E� = Tr��A�E�� , �A12�

where �=�p�p and A= i�Gr−Ga�=Gr�Ga. In the
eigenvalue-eigenvector representation we may write Eq.
�A12� as

�
pq

Cpq�E� = �
�

��
2

�E − ���2 + ���/2�2 . �A13�

The ensemble average of Eq. �A13� provides information
about the resonance pole density, defined as

���,�� = �
�

���� − ������ − ���� , �A14�

which has been the focus of much attention in the recent
literature. We get

�
pq

�Cpq�E�� =
 d�
 d�
���,���2

�E − ��2 + ��/2�2 . �A15�

The left hand side of Eq. �A15� can be calculated explicitly
using Eq. �7� and yields

�
pq

�Cpq�E�� = �
np

Tpn�E��1 + wpn/��E�� . �A16�

Combining �A15� and �A16� we obtain an important con-
straint on ��� ,��. Another constraint can be derived from the
mean delay time �see Eq. �B5�� and reads

Q̄�E� =
 

Ntot

 d�
 d�

���,���
�E − ��2 + ��/2�2 . �A17�

Of course, a full determination of ��� ,�� would require an
infinite number of such energy dependent constraints. Ex-
plicit expressions for ��� ,�� were derived using a generating
function for systems in the absence �32� and presence �33� of
time-reversal symmetry.

A particularly useful measure of the system’s openness is
the total mean width of resonance states, which can be de-
fined from the imaginary part of the effective Hamiltonian,
Hef f =Hcav+�r, through the formula

�̄ = −
2

Ncav
Im�Tr�Hef f�� =

2�

Ncav
�
pn

wpn. �A18�

Defining the mean level distance as D�L /Ncav=4� /Ncav,
we can measure the total coupling strength of the system to
the continuum via the ratio

� = 2
�̄

D
= �

pn

wpn. �A19�

This function can be used to identify various regimes of
quantum decay, such as the regimes of overlapping ���1�
and isolated ���1� resonances.

In view of possible relevance of reorganizations in the
spectrum it is useful to distinguish two types of poles: long-
living states �narrow resonances located right below the real
axis� and short-living states �broad resonances far away from
the real axis�. The ensemble average width of long-living
states, ��l�E��, are known to satisfy the Moldauer-Simonius
relation �34,35�

�
p=1

M

�
n=1

Np

��Snn
pp�E��� = exp�− 	��E���l�E��� . �A20�

Inserting Eq. �11� into Eq. �A20� we find

��l�E�� =
1

2	��E��pn

ln	�pn + ��E�
�pn − ��E�
 . �A21�

Following Ref. �32� we define the mean width of long-living
states as

�̄l =
1

Ncav



−2�

2�

dE��E���l�E�� , �A22�

which yields

�̄l =
2�

Ncav
�
pn

�cosh �pn − sinh��pn�� . �A23�

One can see that if wpn�1��pn�0� we obtain �̄= �̄l. How-
ever, if some subset �p ,n��! satisfies wpn�1��pn�0� then
a reorganization of the spectrum takes place leading to the
appearance of short-lived states strongly coupled to the con-
tinuum, thus taking the major portion of the total mean

width, so that �̄= �̄l+ �̄s, where

�̄s =
2�

Ncav
�

�p,n��!

sinh �pn �A24�

is the mean width of the broad resonances. Quite remarkably,
in the universal ergodic regime that we consider in this pa-
per, the emergence of this resonance cloud does not yield
observable effects in transport observables.

APPENDIX B: TIME SCALES

An important additional source of information about the
realization of specific transport regimes in the system is the
relative value of certain time scales. For instance, the univer-
sal regime we are concerned with is defined by the require-
ment that the ergodic time terg, i.e., the time for a wave
packet to become uniformly spread throughout the available
phase space, be the smallest time scale in the problem. Other
time scales are the decay time tdecay, which is the time scale
for the particle to be emitted from the open cavity, and the
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Heisenberg time tH, which is the time scale for the discrete
structure of the spectrum to affect the dynamics.

There are several ways to estimate the above time scales
for our cavity problem. A particularly convenient one is via
the so-called Wigner-Smith time-delay matrix �36,37� de-
fined as

TWS�E� � i 
�S†

�E
S�E� . �B1�

Consider the ensemble averaged diagonal elements of
TWS�E�,

Qpn�E� = �„TWS�E�…nn
pp� , �B2�

and define the mean delay time as

Q̄�E� =
1

Ntot
�
pn

Qpn�E� = −
i 

Ntot

�

�E
�ln det S�E�� . �B3�

Using Eq. �1� we get

ln det S�E� = Tr ln	E − Hcav − �a

E − Hcav − �r
 , �B4�

where �a= ��r�†. Inserting Eq. �B4� into Eq. �B5� we obtain

Q̄�E� = −
2 

Ntot
Im�Tr�Gr�E��� =

2	 ��E�
Ntot

. �B5�

The remarkable independence of Q̄�E� on the coupling coef-
ficients was justified in Ref. �11� in terms of the general
behavior of the sum of the eigenphases of the scattering ma-
trix upon averaging over an energy interval containing a
large number of resonances.

The decay time tdecay can be estimated directly from the
decay function P�t�, i.e., the probability for the compound
resonant state to survive until time t if it existed at time t
=0. In the limit of strongly overlapping resonances, i.e., a
large number of open scattering channels, and near the center
of the spectrum E=0, it is given by �4�

P�t� = P0e−�corrt, �B6�

where

�corr =
�

2Ncav
�
pn

Tpn �B7�

is the correlation width for fluctuations of S-matrix elements
at different energies. In Ref. �14�, it was shown that �corr
coincides with the value of the distance between the upper-
most cloud of complex poles of the S matrix and the real
energy axis near E=0. This result has a simple interpretation
in terms of a stabilization principle �4�, according to which
for a given degree of overlap between resonances, the system
realizes the configuration of resonance positions in complex
energy plane, which ensures the slowest decay of the com-
pound. When the coupling to the environment increases be-
yond a critical value, this is achieved by forming a small
cloud of broad resonances that detaches from the initial
cloud and by reducing the widths of all other resonances, so
that �corr reduces thereby increasing the average decay time

of the compound system. A mathematical manifestation of
this effect is the invariance of Tpn under the transformation
wpn→1/wpn.

There is an interesting relation between �corr and the av-
erage of the diagonal elements of the Wigner-Smith time-
delay matrix. It reads �4�

Qpn =
 Tpn

�corr
. �B8�

The mean delay time near E=0 is then given by

Q̄ =
1

Ntot
�
pn

Qpn =
2 Ncav

�Ntot
, �B9�

which coincides with Eq. �B5�, since ��0�=Ncav / �	��.
We shall identify the decay time with the inverse correla-

tion width, so that tdecay � /�corr. A simple estimation of the
Heisenberg time is tH� /�, where �=1/��0�=	� /Ncav is
the mean level distance at the center of the spectrum, E=0.
The transport regimes of interest can be classified using the
dimensionless parameter g= tH / tdecay as follows: �i� the semi-
classical regime, where g�1, corresponds to the regime of
many channels and strongly overlapping resonances ��corr

��� �ii� the extreme quantum limit, where g�1, is a regime
of few open scattering channels; and �iii� the regime of iso-
lated resonances, where g�1 ��corr���. There may be
other time scales in the problem associated, for instance,
with measurement procedures, but they will not be relevant
to our subsequent discussions.

APPENDIX C: TRANSMISSION EIGENVALUE DENSITY
AND RELATED CONCEPTS

We shall focus on the two-terminal case, for which the S
matrix has the form

S = 	 r t

t� r�

 = 	S11 S12

S21 S22
 , �C1�

where t , t� and r ,r� are, respectively, transmission and reflec-
tion matrices. The eigenvalues of tt†, denoted � j, are called
transmission eigenvalues and are the basis of several formu-
las for transport observables, such as the cumulants of the
charge counting statistics, defined as �27,38�

qk = ��
j
	��1 − ��

d

d�

k−1

��
�=�j

k = 1,2,… . �C2�

The first cumulant is simply the dimensionless conductance,

q1 = �
j

� j = g . �C3�

The second cumulant is the dimensionless shot-noise power,

q2 = �
j

� j�1 − � j� = p . �C4�

The third and fourth cumulants have also received much at-
tention and are given, respectively, by
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q3 = �
j

� j�1 − � j��1 − 2� j� �C5�

and

q4 = �
j

� j�1 − � j��1 − 6� j + 6� j
2� . �C6�

More generally, an observable that is a linear statistics of the
transmission eigenvalues can be written as

A = �
j

a�� j� , �C7�

where a��� is an arbitrary function. In the limit of an infinite
number of resonances, Ncav→�, the scattering matrix at the
spectrum center �E=0� tends towards the Poisson kernel dis-
tribution �9,15�

P�S� = C��det�1 − S�S�†��−��N1+N2−1+2/��, �C8�

where C� is a normalization constant and

�Snm
pq � = �pq�nmtanh��pn/2� . �C9�

The parameter � identifies the symmetry class and can as-
sume three values: �=1 for orthogonal symmetry, �=2 for
unitary symmetry and �=4 for symplectic symmetry. The
Poisson kernel distribution implies that the transmission ei-
genvalues � j’s become correlated random variables. Calcula-
tion of its correlation functions is a central issue in random
matrix theory.

The average of A can be calculated from the average den-
sity of transmission eigenvalues, ����=� j����−� j��, as

�A� = 

0

1

d�a������� . �C10�

The information about the barriers at the waveguide-cavity
interfaces enters the density ���� only through the set of
transmission coefficients Tpn=1− ��Snn

pp��2. Apart from its in-
trinsic practical value indicated above, the density of trans-
mission eigenvalues is also a very useful tool to quantify
certain features of resonance interactions in complex energy
plane. It will be the central object of our analysis in the body
of the paper.

Calculation of ���� for arbitrary number of channels and
barrier’s transparencies has proved to be an exceedingly dif-
ficult job �39�. Formally exact expressions, however, can be
obtained through the supersymmetry method by means of the
generating function introduced by Rejaei �40�,

Z��0,�1� = det	 1 − sin2��0/2�tt†

1 + sinh2��1/2�tt†
 , �C11�

where t is the random transmission matrix defined in Eq.
�C1�. Defining ��Q� as the ensemble average of Z��0 ,�1�
one can show, e.g., for systems with unitary symmetry ��
=2�, that

��Q� =
 dQ�f1�Q,Q��f2�Q�,Q0� , �C12�

in which

fp�Q,Q�� = �
n=1

Np

Sdet−1�1 + e−�pnQQ��, p = 1,2

�C13�

describe the coupling of the cavity to the waveguides. The
interface’s transparencies appear through the variables �pn
related to the transmission coefficients Tpn, via the identity
Tpn=sech2��pn /2�. We used standard notation for supermath-
ematics: Sdet stands for the superdeterminant and dQ is the
invariant measure of the coset space C=U�1,1 �2� / �U�1 �1�
� U�1 �1��. Points in C are represented by using Efetov’s po-
lar coordinates �41�,

Q = U−1	cos�̂ i sin�̂

− i sin�̂ − cos�̂

U , �C14�

where �̂�diag�i�1 ,�0� , �1�0, 0��0�	, and U is a super-
matrix. The special point, Q0=diag�1,1 ,−1 ,−1�, represents
the origin of C.

In order to make contact with Nazarov’s circuit theory, we
follow Ref. �17� and define a pseudocurrent as

I��� = − 2	 ��

��0



�0=�=i�1

= �
j
� sin����i

1 − �isin2��/2�� ,

�C15�

in which we used Eq. �C11�.
Define the auxiliary function F���= I��� / sin���, then

F��� = 

0

1

d�
�����

1 − � sin2��/2�
= f„sin2��/2�… , �C16�

and therefore

���� = −
1

	�2 Im� f	 1

� + i0+
� . �C17�

Because of the need to evaluate the superdeterminants, Eq.
�C12� is too cumbersome for explicit calculations with arbi-
trary number of channels N1 and N2 and thus only particular
cases were analyzed in previous works. A particularly favor-
able situation is that of ideal point contacts, i.e., when Tpn
=1, in which case calculations simplify considerably and one
finds �39�

���� = ���
n=0

N−1

�2n + � + 1��Pn
��,0��1 − 2���2, �C18�

where �= �N1−N2� , N=min�N1 ,N2�, and Pn
��,���x� is the Ja-

cobi polynomial. This result is consistent with the following
joint distribution of transmission eigenvalues, also known as
the Jacobi ensemble �42�:

P����� = CN�
i�j

��i − � j�2�
i=1

N

�i
� =

1

N!
det„K��i,� j�…i,j=1,…,N,

�C19�

where CN is a normalization constant and
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K��,��� = ������/2�
n=0

N−1

�2n + � + 1�Pn
��,0��1 − 2��


 Pn
��,0��1 − 2��� �C20�

is a projection kernel with the properties


 d�K��,�� = N �C21�

and


 d��K��,���K���,��� = K��,��� . �C22�

The density, Eq. �C18�, satisfies ����=K�� ,��. This joint dis-
tribution was presented in Ref. �15� and can be derived from
random-matrix theory using the maximum information-
entropy principle.

It is important to our discussions in Sec. III to understand
how the asymptotics, for N1 ,N2�1, of ���� can be derived
from Eq. �C19�. With the change of variables, �i=1/ �1+�i�,
the joint distribution acquires the following Gibbs form:

P����� = Z−1exp�− �H� , �C23�

where �=2,Z is the partition function and

H = �
i

v��i� + �
i�j

u��i,� j� �C24�

is the effective Hamiltonian, where v���= �1/2��N1

+N2�ln�1+�� is a confining potential and u�� ,���=−ln��
−��� is a repulsive interaction. Physically, it can be inter-
preted as a one-component plasma or a logarithmic Coulomb
gas with all particles having the same sign of charge. The
new level density is defined by ����=�ii����−�i��. In the
limit N1 ,N2�1 we may use the continuum approximation

H =
 d�����v��� +
1

2

 d�
 d��u��,������������ .

The competition between the confining potential and the re-
pulsive interaction leads to an equilibrium configuration of
the levels, which can be obtained from a variational prin-
ciple, �H=0, subject to the normalization constraint


 d����� = N . �C25�

One finds the equilibrium equation

v��� +
 d��u��,�������� + const = 0, �C26�

which is equivalent to

P

0

�

d��
�����
� − ��

=
�N1 + N2�
2�1 + ��

. �C27�

The solution to this equation was found by Beenakker �15�
and reads

���� =
�N1N2

	�1 + ��
	 1

�
−

1

�0

1/2

, �C28�

where �0=4N1N2 / �N1−N2�2. Switching back to the original
variable, �=1/ �1+��, we get

���� =
N1 + N2

2	�
�� − �0

1 − �
, �0 � � � 1, �C29�

where �0=1/ �1+�0�= ��N1−N2� / �N1+N2��2. As can be seen
from the above derivation, this result is independent of �
� �1,2 ,4� and therefore applies to all symmetry classes.

A similar asymptotic analysis was pursued in Ref. �22�
using a diagrammatic method. They managed to treat sys-
tems with barriers of arbitrary transparencies. Analytic re-
sults for ����, however, were only obtained for symmetric
barriers, i.e., T1n=T2n=Tn and N1=N2=N. They found

���� = �
n=1

N
Tn�2 − Tn�

	�Tn
2 − 4Tn� + 4�����1 − ��

. �C30�

Note that if Tn=1 one gets

���� =
N

	

1
���1 − ��

, �C31�

in agreement with Eq. �C29� for N1=N2=N. More recently
�20� analytical results were obtained for asymmetric barriers
and equivalent channels using the same method and com-
plete agreement with circuit theory was found. The singular-
ity at �=1, which appears both in Eqs. �C29� and �C30�,
signals the formation of Fabry-Perot resonance states be-
tween the barriers and is the center of our attention in the
body of this paper.

�1� For a review, see D. K. Ferry and S. M. Goodnick, Transport
in Nanostructures �Cambridge University Press, Cambridge,
England, 1997�.

�2� See, e.g., J. P. Bird et al., Phys. Rev. Lett. 82, 4691 �1999�.
�3� E. Persson, I. Rotter, H.-J. Stöckmann, and M. Barth, Phys.

Rev. Lett. 85, 2478 �2000�.

�4� For a review, see F.-M. Dittes, Phys. Rep. 339, 215 �2000�.
�5� J. Okolowicz, M. Ploszajczak, and I. Rotter, Phys. Rep. 374,

271 �2003�.
�6� H. Feshbach, C. E. Porter, and V. F. Weisskopf, Phys. Rev. 96,

448 �1954�.
�7� C. Mahaux and H. A. Weidenmüller, Shell Model Approach in

FORMATION OF FABRY-PEROT RESONANCES IN… PHYSICAL REVIEW E 71, 066218 �2005�

066218-17



Nuclear Reactions �North-Holland, Amsterdam, 1969�.
�8� J. J. M. Verbaarschot, H. A. Weidenmüller, and M. R. Zirn-

bauer, Phys. Rep. 129, 367 �1985�.
�9� For a review, see P. A. Mello and H. U. Baranger, Waves

Random Media 9, 105 �1999�.
�10� S. Helgason, Geometric Analysis on Symmetric Spaces, Math-

ematical Surveys and Monographs No. 39 �American Math-
ematical Society, Providence, 1994�.

�11� C. H. Lewenkopf and H. A. Weidenmüller, Ann. Phys. �N.Y.�
212, 53 �1991�.

�12� P. W. Brouwer, Phys. Rev. B 51, 16878 �1995�.
�13� C. Jung, M. Müller, and I. Rotter, Phys. Rev. E 60, 114

�1999�.
�14� N. Lehmann, D. Saher, V. V. Sokolov, and H.-J. Sommers,

Nucl. Phys. A 582, 223 �1995�.
�15� For a review, see C. W. J. Beenakker, Rev. Mod. Phys. 69, 731

�1997�.
�16� M. Kindermann and Yu. V. Nazarov, Phys. Rev. Lett. 91,

136802 �2003�.
�17� A. M. S. Macêdo, Phys. Rev. B 66, 033306 �2002�.
�18� Yu. V. Nazarov, in Quantum Dynamics of Submicron Struc-

tures, edited by H. Cerdeira, B. Kramer, and G. Schoen �Klu-
wer, Dordrecht, 1995�, p. 687.

�19� A. M. S. Macêdo, Phys. Rev. B 61, 4453 �2000�.
�20� A. L. R. Barbosa and A. M. S. Macêdo, Phys. Rev. B 71,

235307 �2005�.
�21� A. M. S. Macêdo and J. T. Chalker, Phys. Rev. B 49, 4695

�1994�.
�22� P. W. Brouwer and C. W. J. Beenakker, J. Math. Phys. 37,

4904 �1996�.
�23� K. E. Nagaev, P. Samuelsson, and S. Pilgram, Phys. Rev. B

66, 195318 �2002�.
�24� J. T. Chalker and M. Bernhardt, Phys. Rev. Lett. 70, 982

�1993�.
�25� M. Bernhardt and J. T. Chalker �unpublished�.
�26� Yan V. Fyodorov and B. A. Khoruzhenko, Phys. Rev. Lett. 83,

65 �1999�.
�27� L. S. Levitov, H. W. Lee, and G. B. Lesovik, J. Math. Phys.

37, 4845 �1996�. For a recent review, see L. S. Levitov, in
Quantum Noise in Mesoscopic Systems, edited by Yu. V. Naz-
arov �Kluwer, Dordrecht, 2003�.

�28� A. M. S. Macêdo and Andre M. C. Souza �unpublished�.
�29� For a recent review, see Yan Fyodorov and H.-J. Sommers, J.

Phys. A 36, 3303 �2003�.
�30� A. M. S. Macêdo, Phys. Rev. B 63, 115309 �2001�.
�31� A. M. S. Macêdo, Phys. Rev. B 69, 155309 �2004�.
�32� Yan V. Fyodorov and H.-J. Sommers, J. Math. Phys. 38, 1918

�1997�.
�33� H.-J. Sommers, Yan V. Fyodorov, and M. Titov, J. Phys. A 32,

L77 �1999�.
�34� P. A. Moldauer, Phys. Rev. 157, 907 �1967�.
�35� M. Simonius, Phys. Lett. 52B, 279 �1974�.
�36� E. P. Wigner, Phys. Rev. 98, 145 �1955�.
�37� F. Smith, Phys. Rev. 118, 349 �1960�.
�38� D. A. Ivanov, H. W. Lee, and L. S. Levitov, Phys. Rev. B 56,

6839 �1997�.
�39� J. E. F. Araújo and A. M. S. Macêdo, Phys. Rev. B 58, R13379

�1998�.
�40� B. Rejaei, Phys. Rev. B 53, R13235 �1996�.
�41� K. B. Efetov, Supersymmetry in Disorder and Chaos �Cam-

bridge University Press, Cambridge, England, 1997�.
�42� M. L. Mehta, Random Matrices �Academic, New York, 1991�.

A. M. S. MACÊDO AND A. M. C. SOUZA PHYSICAL REVIEW E 71, 066218 �2005�

066218-18


